Course 1 Summary of Key Points and Exercises for Basic Problems

Summary of Key Points

Basic Drawings

(1) Perpendicular bisector of line segment

(2) Angle bisector

(Note) Perpendicular bisector of line segment... Set of points at an equal distance from both ends of the line segment Angle bisector... Set of points at an equal distance on the two sides of the angle
2 Space Figures
(1) Positional relation between two straight lines
Intersecting lines \qquad - Present on the same plane Parallel lines \qquad Not on the same plane

3 Parallel lines and Angles
(2) Cut sections of a cube

(1) Parallel lines
(1) Exterior-interior angles and alternate-interior angles of parallel lines are equal.
(2) Two lines having equal exterior-interior angles or alternate-interior angles are parallel.
(2) Angles of a triangle
(1) Sum of the interior angles of a triangle is 180°.
(2) An exterior angle of a triangle is equal to the sum of the 2 non-adjacent interior angles.
(3) Angles of a polygon
(1) Sum of the interior angles of the n-sided polygon is $180^{\circ} \times(n-2)$.
(2) Sum of the exterior angles of n-sided polygon is 360°.

Basic Problems

1 <Basic Drawings> Answer the following question.
(1) In Figure 1, draw the perpendicular bisector of line segment $A B$ and the bisector of $\angle C$.
(2) In Figure 2, draw a perpendicular to the straight line $\boldsymbol{\ell}$ passing through point \mathbf{P} and a perpendicular to the straight line $\boldsymbol{\ell}$ passing through point \mathbf{Q}.
Figure 1

Figure 2

Use only compass and ruler. Keep the lines, drawn during making the figure, as it is. Do not erase the lines.
2 <Space Figures> Figure 1 on the right side is a cube, and Figure 2 is the opened-up cube. Answer the following.
(1) Mention all the sides parallel to side $A B$.

(3) Take the midpoint of side $\mathbf{E F}$ as \mathbf{M}, and midpoint of side $\mathbf{F G}$ as \mathbf{N}. View of the section of the cube shown in the Figure 1, when it is cut in to a plane on four points $\mathbf{A}, \mathrm{M}, \mathrm{N}$ and C .
$\Rightarrow \mathrm{AC} / / \mathrm{MN}$ as the surface ABCD is parallel to surface EFGH .

$$
A
$$

(4) In Figure 2, which surface will be parallel to plane ' \mathbf{b} ', when the opened-up cube is assembled. $>$ Find out the surface non-adjacent to 'b'.

3 <Parallel lines and angles>
In the following figure, calculate the size of $\angle \boldsymbol{X}, \angle \boldsymbol{Y}$, when $\boldsymbol{\ell} / / \boldsymbol{m}$.
(1)

$\Rightarrow \boldsymbol{X}=180^{\circ}-\left(\angle \boldsymbol{X}+42^{\circ}\right)$
(2)

Draw parallel lines to $\boldsymbol{\ell}, \boldsymbol{m}$ from the top of $\angle \boldsymbol{X} . \angle \boldsymbol{X}=40^{\circ}+28^{\circ}$
4. $\angle X \quad \angle Y$
A. $\angle X$

4 <Angles of triangle> In the following figure, calculate the size of $\angle \boldsymbol{X}, \angle \boldsymbol{Y}$.
(1)

$-\angle \boldsymbol{X}$ is an exterior angle of rABO and rCDO.
$\triangle \boldsymbol{X}$ is an exterior angle of rABC .
A. $\angle X$ $\angle \mathbf{Y}$
A. $\angle X$ \qquad

5 <Angles of polygon> Answer the following question.
(1) Calculate the sum of interior angles of an octagon.

- $180^{\circ} \times(8-2)$ \qquad
(2) Calculate the size of one exterior angle of a regular dodecagon.
- $360^{\circ} \div 12$ At.

